Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Am J Primatol ; : e23615, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467477

ABSTRACT

Forest loss and degradation due to land cover changes imperil biodiversity worldwide. Subtropical and tropical ecosystems experience high deforestation rates, negatively affecting species like primates. Madagascar's endemic lemurs face exceptionally high risks of population declines and extirpation. We examined how short-term land cover changes within a fragmented landscape in southeastern Madagascar impacted the density of lemur species. Using line transects, we assessed density changes in nine lemur species across five forest fragments. Diurnal surveys were conducted monthly from 2015 to 2019 on 35 transects (total effort = 1268 km). Additionally, 21 transects were surveyed nocturnally in 2015 and 2016 (total effort = 107.5 km). To quantify forest cover changes, we generated land use/land cover (LULC) maps from Sentinel-2 imagery using supervised classification for each year. For the LULC maps, we overlayed species-specific buffers around all transects and calculated the proportion of land cover classes within them. We observed declines in the annual densities of four diurnal and cathemeral lemur species between 2015 and 2019, with species-specific declines of up to 80% (Varecia variegata). While the density of two nocturnal species decreased, one increased fivefold (Cheirogaleus major) between 2015 and 2016. By 2019, Grassland was the dominant land type (50%), while Paddy Fields had the smallest coverage (1.03%). Mature Agricultural Land increased the most (63.37%), while New Agricultural Land decreased the most (-66.36%). Unexpectedly, we did not find evidence that higher forest cover supported a higher lemur population density within sampled areas, but we found support for the negative impact of degraded land cover types on three lemur species. Our study underscores the urgent need to address land-use changes and their repercussions for primate populations in tropical ecosystems. The diverse responses of lemur species to modified habitats highlight the complexity of these impacts and emphasize the importance of targeted conservation efforts.

2.
PLoS One ; 19(3): e0300972, 2024.
Article in English | MEDLINE | ID: mdl-38536831

ABSTRACT

Madagascar has a harsh and stochastic climate because of regular natural disturbances. This history of regular cyclones has been hypothesised to have directed evolutionary changes to lemur behaviour and morphology that make them more resilient to sudden environmental change. These adaptations may include: small group sizes, high degrees of energy-conserving behaviours, generalist habitat use, small home ranges, small body size, and a limited number of frugivorous species. To date, however, no one has tested how variation in cyclone exposure across Madagascar is associated with variation in these resilience traits. In this study, we created a detailed cyclone impact map for Madagascar using Koppen-Geiger climate class, historical cyclone tracks, the Saffir Class of cyclone and hurricane intensity, and precipitation data. We also used existing literature to calculate a resilience score for 26 lemur species for which data existed on resilience traits. Our cyclone impact map was then overlaid on known geographic ranges of these species and compared to resilience score while controlling for phylogenetic non-independence and spatial autocorrelation. We found no association between cyclone impact in a lemur range and their resilience score. When assessing traits individually, however, we found that cyclone impact was positively associated with body size, suggesting that the more impacted a species is by cyclones the smaller they are. We also found cyclone impact to be negatively associated with frugivory, with species in higher impact zones eating more fruit. While unexpected, this could reflect an increased production in fruit in tree fall gaps following cyclones. While we did not find a pattern between cyclone impact and behavioural resilience in lemurs, we suggest a similar study at a global scale across all primates would allow for more taxonomic variation and reveal larger patterns key to understanding past and future vulnerability to natural disturbances in primates.


Subject(s)
Cyclonic Storms , Lemur , Strepsirhini , Animals , Phylogeny , Ecosystem , Demography , Madagascar
3.
Am J Biol Anthropol ; 183(1): 60-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37607125

ABSTRACT

OBJECTIVES: The investigation of morphological variation in animals is widely used in taxonomy, ecology, and evolution. Using large datasets for meta-analyses has dramatically increased, raising concerns about dataset compatibilities and biases introduced by contributions of multiple researchers. MATERIALS AND METHODS: We compiled morphological data on 13 variables for 3073 individual mouse lemurs (Cheirogaleidae, Microcebus spp.) from 25 taxa and 153 different sampling locations, measured by 48 different researchers. We introduced and applied a filtering pipeline and quantified improvements in data quality (Shapiro-Francia statistic, skewness, and excess kurtosis). The filtered dataset was then used to test for genus-wide sexual size dimorphism and the applicability of Rensch's, Allen's, and Bergmann's rules. RESULTS: Our pipeline reduced inter-observer bias (i.e., increased normality of data distributions). Inter-observer reliability of measurements was notably variable, highlighting the need to reduce data collection biases. Although subtle, we found a consistent pattern of sexual size dimorphism across Microcebus, with females being the larger (but not heavier) sex. Sexual size dimorphism was isometric, providing no support for Rensch's rule. Variations in tail length but not in ear size were consistent with the predictions of Allen's rule. Body mass and length followed a pattern contrary to predictions of Bergmann's rule. DISCUSSION: We highlighted the usefulness of large multi-researcher datasets for testing ecological hypotheses after correcting for inter-observer biases. Using genus-wide tests, we outlined generalizable patterns of morphological variability across all mouse lemurs. This new methodological toolkit aims to facilitate future large-scale morphological comparisons for a wide range of taxa and applications.


Subject(s)
Cheirogaleidae , Animals , Female , Humans , Body Size , Observer Variation , Data Accuracy , Reproducibility of Results
4.
Proc Natl Acad Sci U S A ; 119(42): e2121105119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215474

ABSTRACT

Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.


Subject(s)
Biological Evolution , Primates , Americas , Animals , Cercopithecidae , Haplorhini , Humans , Madagascar , Mammals , Trees
5.
Ecology ; 103(6): e3687, 2022 06.
Article in English | MEDLINE | ID: mdl-35315058

ABSTRACT

Madagascar is a threatened global biodiversity hotspot and conservation priority, yet we lack broad-scale surveys to assess biodiversity across space and time. To fill this gap, we collated camera trap surveys, capturing species occurrences within Madagascar into a single standardized database. This data set includes nine distinct protected areas of Madagascar and encompasses 13 subprojects, 38 camera arrays, and 1156 sampling units (independent camera site per survey) within two important biodiversity eco-regions: western dry deciduous forest and eastern humid rainforest. Camera surveys were conducted from June 2007 to January 2021. The final data set includes 17 unique families of mammals (Bovidae, Canidae, Cheirogaleidae, Daubentoniidae, Equidae, Eupleridae, Felidae, Hominidae, Indriidae, Lemuridae, Lepilemuridae, Muridae, Nesomyidae, Pteropodidae, Soricidae, Suidae, Tenrecidae) comprising 45 species and 27 unique families of birds (Accipitridae, Acrocephalidae, Alcedinidae, Bernieridae, Brachypteraciidae, Caprimulgidae, Cisticolidae, Columbidae, Coraciidae, Corvidae, Cuculidae, Dicruridae, Mesitornithidae, Monarchidae, Motacillidae, Muscicapidae, Numididae, Phasianidae, Rallidae, Sarothruridae, Strigidae, Sturnidae, Sulidae, Threskiornithidae, Upupidae, Vangidae, Zosteropidae) comprising 58 species. Images were processed and verified by individual project data set creators and camera operation and species tables were then collated. The final product represents the first broad-scale freely available standardized formal faunal database for Madagascar. Data are available through this publication and at DOI: 10.5281/zenodo.5801806. These data will be useful for examining species-level and community-level trends in occurrence across space or time within Madagascar and globally, evaluating native and invasive species dynamics, and will aid in determining species conservation status and planning for at-risk species. There are no copyright restrictions; please cite this paper when using the data for publication.


Subject(s)
Biodiversity , Forests , Animals , Birds , Humans , Madagascar/epidemiology , Mammals , Swine
6.
BMC Ecol Evol ; 21(1): 222, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34915861

ABSTRACT

BACKGROUND: Habitat disturbance affects the biology and health of animals globally. Understanding the factors that contribute to the differential responses of animals to habitat disturbance is critical for conservation. The gut microbiota represents a potential pathway through which host responses to habitat disturbance might be mediated. However, a lack of quantitative environmental data in many gut microbiome (GM) studies of wild animals limits our ability to pinpoint mechanisms through which habitat disturbance affects the GM. Here, we examine the impact of anthropogenic habitat disturbance on the diet and GM of the Critically Endangered black-and-white ruffed lemur (Varecia variegata editorum). We collected fecal samples and behavioral data from Varecia occupying habitats qualitatively categorized as primary forest, moderately disturbed forest, and heavily disturbed forest. RESULTS: Varecia diet and GM composition differed substantially across sites. Dietary richness predicted GM richness across sites, and overall GM composition was strongly correlated to diet composition. Additionally, the consumption of three specific food items positively correlated to the relative abundances of five microbial strains and one microbial genus across sites. However, diet did not explain all of the GM variation in our dataset, and differences in the GM were detected that were not correlated with diet, as measured. CONCLUSIONS: Our data suggest that diet is an important influence on the Varecia GM across habitats and thus could be leveraged in novel conservation efforts in the future. However, other factors such as contact with humans should also be accounted for. Overall, we demonstrate that quantitative data describing host habitats must be paired with GM data to better target the specific mechanisms through which environmental change affects the GM.


Subject(s)
Gastrointestinal Microbiome , Lemur , Lemuridae , Animals , Diet , Ecosystem , Humans
7.
Am J Primatol ; 83(7): e23270, 2021 07.
Article in English | MEDLINE | ID: mdl-34010491

ABSTRACT

Primate species face growing risks of extinction throughout the world. To better protect their populations, effective monitoring techniques are needed. The goal of this study was to evaluate the use of arboreal camera traps and occupancy modeling as conservation tools for threatened lemur species. This project aimed to (1) estimate the occupancy and detection probabilities of lemur species, (2) investigate factors potentially affecting lemur habitat use, and (3) determine whether ground or arboreal cameras are better for surveying lemur assemblages. We conducted camera trapping research in five forest fragments (total trap nights = 1770; 900 arboreal trap nights (134 photo events); 870 ground trap nights (2 photo events)) and reforestation areas (total trap nights = 608; 1 photo event) in Kianjavato, Madagascar from May to September 2019. We used arboreal trap data from fragments to estimate occupancy for five species: the red-fronted brown lemur (Eulemur rufifrons; ψ = 0.54 ± SD 0.03), Jolly's mouse lemur (Microcebus jollyae; ψ = 0.14 ± 0.17), the greater dwarf lemur (Cheirogaleus major; ψ = 0.42 ± 0.30), the red-bellied lemur (Eulemur rubriventer; ψ = 0.24 ± 0.03), and the black-and-white ruffed lemur (Varecia variegata; ψ = 0.24 ± 0.08). Tree diameter, elevation, distance to village, and canopy connectivity were important predictors of occupancy, while camera height, canopy connectivity, fragment ID, and fragment size predicted detection. Arboreal cameras recorded significantly higher species richness compared with ground cameras. We suggest expanded application of arboreal camera traps in future research, but we recommend longer trapping periods to better sample rarer species. Overall, arboreal camera trapping combined with occupancy modeling can be a highly efficient and useful approach for monitoring and predicting the occurrence of elusive lemur species and has the potential to be effective for other arboreal primates and canopy taxa across the globe.


Subject(s)
Cheirogaleidae , Lemur , Animals , Ecosystem , Endangered Species , Forests , Madagascar
8.
Am J Primatol ; 83(6): e23255, 2021 06.
Article in English | MEDLINE | ID: mdl-33792947

ABSTRACT

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 2 million fatalities since it first emerged in late 2019. As we write, infection rates are at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary target of SARS-CoV-2 is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predict that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results while finding additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.


Subject(s)
COVID-19/veterinary , Lemur , Lorisidae , Primate Diseases/epidemiology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/epidemiology , Lemur/genetics , Lorisidae/genetics , Primate Diseases/virology , Risk Factors
9.
bioRxiv ; 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33564767

ABSTRACT

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 1.5 million fatalities since it first emerged in late 2019. As we write, infection rates are currently at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary viral target is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predicts that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results and finds additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and Endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.

11.
Bioscience ; 70(9): 794-803, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32973409

ABSTRACT

Threats to biodiversity are well documented. However, to effectively conserve species and their habitats, we need to know which conservation interventions do (or do not) work. Evidence-based conservation evaluates interventions within a scientific framework. The Conservation Evidence project has summarized thousands of studies testing conservation interventions and compiled these as synopses for various habitats and taxa. In the present article, we analyzed the interventions assessed in the primate synopsis and compared these with other taxa. We found that despite intensive efforts to study primates and the extensive threats they face, less than 1% of primate studies evaluated conservation effectiveness. The studies often lacked quantitative data, failed to undertake postimplementation monitoring of populations or individuals, or implemented several interventions at once. Furthermore, the studies were biased toward specific taxa, geographic regions, and interventions. We describe barriers for testing primate conservation interventions and propose actions to improve the conservation evidence base to protect this endangered and globally important taxon.

12.
Sci Rep ; 9(1): 16276, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700150

ABSTRACT

In recent decades Madagascar has experienced significant habitat loss and modification, with minimal understanding of how human land use practices have impacted the evolution of its flora and fauna. In light of ongoing and intensifying anthropogenic pressures, we seek new insight into mechanisms driving genetic variability on this island, using a Critically Endangered lemur species, the black-and-white ruffed lemur (Varecia variegata), as a test case. Here, we examine the relative influence of natural and anthropogenic landscape features that we predict will impose barriers to dispersal and promote genetic structuring across the species range. Using circuit theory, we model functional connectivity among 18 sampling localities using population-based genetic distance (FST). We optimized resistance surfaces using genetic algorithms and assessed their performance using maximum-likelihood population-effects mixed models. The best supported resistance model was a composite surface that included two anthropogenic features, habitat cover and distance to villages, suggesting that rapid land cover modification by humans has driven change in the genetic structure of wild lemurs. Primary conservation priority should be placed on mitigating further forest loss and connecting regions identified as having low dispersal potential to prevent further loss of genetic diversity and promote the survival of other moist forest specialists.


Subject(s)
Endangered Species , Genetic Variation , Genetics, Population , Lemur/genetics , Selection, Genetic , Animals , Genotype , Geography , Humans , Madagascar , Remote Sensing Technology
13.
Ecol Evol ; 8(18): 9229-9240, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30377496

ABSTRACT

Noninvasive sampling is an important development in population genetic monitoring of wild animals. Particularly, the collection of environmental DNA (eDNA) which can be collected without needing to encounter the target animal facilitates the genetic analysis of endangered species. One method that has been applied to these sample types is target capture and enrichment which overcomes the issue of high proportions of exogenous (nonhost) DNA from these lower quality samples. We tested whether target capture of mitochondrial DNA from sampled feeding traces of the aye-aye, an endangered lemur species would yield mitochondrial DNA sequences for population genetic monitoring. We sampled gnawed wood where aye-ayes excavate wood-boring insect larvae from trees. We designed RNA probes complementary to the aye-aye's mitochondrial genome and used these to isolate aye-aye DNA from other nontarget DNA in these samples. We successfully retrieved six near-complete mitochondrial genomes from two sites within the aye-aye's geographic range that had not been sampled previously. Our method demonstrates the application of next-generation molecular techniques to species of conservation concern. This method can likely be applied to alternative foraged remains to sample endangered species other than aye-ayes.

14.
J Hered ; 108(2): 107-119, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28173059

ABSTRACT

The family Lepilemuridae includes 26 species of sportive lemurs, most of which were recently described. The cryptic morphological differences confounded taxonomy until recent molecular studies; however, some species' boundaries remain uncertain. To better understand the genus Lepilemur, we analyzed 35 complete mitochondrial genomes representing all recognized 26 sportive lemur taxa and estimated divergence dates. With our dataset we recovered 25 reciprocally monophyletic lineages, as well as an admixed clade containing Lepilemur mittermeieri and Lepilemur dorsalis. Using modern distribution data, an ancestral area reconstruction and an ecological vicariance analysis were performed to trace the history of diversification and to test biogeographic hypotheses. We estimated the initial split between the eastern and western Lepilemur clades to have occurred in the Miocene. Divergence of most species occurred from the Pliocene to the Pleistocene. The biogeographic patterns recovered in this study were better addressed with a combinatorial approach including climate, watersheds, and rivers. Generally, current climate and watershed hypotheses performed better for western and eastern clades, while speciation of northern clades was not adequately supported using the ecological factors incorporated in this study. Thus, multiple mechanisms likely contributed to the speciation and distribution patterns in Lepilemur.


Subject(s)
Genetic Speciation , Genome, Mitochondrial , Lemuridae/classification , Phylogeny , Animals , Climate , DNA, Mitochondrial , Madagascar , Models, Genetic , Phylogeography
15.
PLoS One ; 10(4): e0122721, 2015.
Article in English | MEDLINE | ID: mdl-25856241

ABSTRACT

Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Models, Biological , Plant Dispersal , Plants/genetics , Algorithms , Geography , Madagascar , Population Dynamics , Tropical Climate
16.
Ecol Evol ; 4(13): 2675-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25077019

ABSTRACT

Lemurs are among the world's most threatened mammals. The critically endangered black-and-white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remaining V. variegata range. We used 10 polymorphic microsatellite loci and ∼550 bp of mtDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of the Mangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high average F ST (0.247) and ΦST (0.544), and followed a pattern of isolation-by-distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re-evaluation of conservation management units moving forward.

18.
Am J Phys Anthropol ; 151(1): 77-87, 2013 May.
Article in English | MEDLINE | ID: mdl-23595644

ABSTRACT

Previous work in primates has shown that body size often covaries with ecological parameters related to resource or energy availability in the environment. This relationship may differ for males and females as access to resources has greater importance for reproductive success in females. We test the hypotheses that (1) female body mass may be more tightly constrained than male body mass by ecological variables, and (2) female body mass may respond more strongly than male body mass to changes in ecological variables (i.e., population-specific female mass may vary more across an ecological gradient than male mass). Specifically, we investigate the relationship between climatic variables and sex-specific body mass in Propithecus, a genus in which species-specific body mass has already been demonstrated to covary significantly with climatic variables. Data from 733 wild sifakas are used to identify sex-specific body mass for 27 populations representing all nine described sifaka species, and climatic data for each population are derived from the WorldClim database. We use phylogenetic generalized least squares models to demonstrate that body mass in both sexes is significantly correlated with annual rainfall and number of dry months. Furthermore, coefficients of determination are always higher for female models, and coefficients for each climatic variable are higher for females in all significant models. These results support the two hypotheses tested, indicating that ecological forces can have a greater impact on female mass than on male mass in primates.


Subject(s)
Body Size/physiology , Environment , Strepsirhini/anatomy & histology , Strepsirhini/physiology , Animals , Anthropology, Physical , Cluster Analysis , Female , Geographic Information Systems , Madagascar , Male , Models, Biological , Phylogeny , Sex Factors
19.
Proc Natl Acad Sci U S A ; 110(15): 5823-8, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530231

ABSTRACT

We performed a population genomics study of the aye-aye, a highly specialized nocturnal lemur from Madagascar. Aye-ayes have low population densities and extensive range requirements that could make this flagship species particularly susceptible to extinction. Therefore, knowledge of genetic diversity and differentiation among aye-aye populations is critical for conservation planning. Such information may also advance our general understanding of Malagasy biogeography, as aye-ayes have the largest species distribution of any lemur. We generated and analyzed whole-genome sequence data for 12 aye-ayes from three regions of Madagascar (North, West, and East). We found that the North population is genetically distinct, with strong differentiation from other aye-ayes over relatively short geographic distances. For comparison, the average FST value between the North and East aye-aye populations--separated by only 248 km--is over 2.1-times greater than that observed between human Africans and Europeans. This finding is consistent with prior watershed- and climate-based hypotheses of a center of endemism in northern Madagascar. Taken together, these results suggest a strong and long-term biogeographical barrier to gene flow. Thus, the specific attention that should be directed toward preserving large, contiguous aye-aye habitats in northern Madagascar may also benefit the conservation of other distinct taxonomic units. To help facilitate future ecological- and conservation-motivated population genomic analyses by noncomputational biologists, the analytical toolkit used in this study is available on the Galaxy Web site.


Subject(s)
Genetics, Population , Genomics , Lemur/genetics , Lemur/physiology , Animals , Evolution, Molecular , Genome , Genotype , Geography , Internet , Madagascar , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Time Factors
20.
PLoS One ; 6(9): e24107, 2011.
Article in English | MEDLINE | ID: mdl-21909413

ABSTRACT

Biodiversity plays an integral role in the livelihoods of subsistence-based forest-dwelling communities and as a consequence it is increasingly important to develop quantitative approaches that capture not only changes in taxonomic diversity, but also variation in natural resources and provisioning services. We apply a functional diversity metric originally developed for addressing questions in community ecology to assess utilitarian diversity of 56 forest plots in Madagascar. The use categories for utilitarian plants were determined using expert knowledge and household questionnaires. We used a null model approach to examine the utilitarian (functional) diversity and utilitarian redundancy present within ecological communities. Additionally, variables that might influence fluctuations in utilitarian diversity and redundancy--specifically number of felled trees, number of trails, basal area, canopy height, elevation, distance from village--were analyzed using Generalized Linear Models (GLMs). Eighteen of the 56 plots showed utilitarian diversity values significantly higher than expected. This result indicates that these habitats exhibited a low degree of utilitarian redundancy and were therefore comprised of plants with relatively distinct utilitarian properties. One implication of this finding is that minor losses in species richness may result in reductions in utilitarian diversity and redundancy, which may limit local residents' ability to switch between alternative choices. The GLM analysis showed that the most predictive model included basal area, canopy height and distance from village, which suggests that variation in utilitarian redundancy may be a result of local residents harvesting resources from the protected area. Our approach permits an assessment of the diversity of provisioning services available to local communities, offering unique insights that would not be possible using traditional taxonomic diversity measures. These analyses introduce another tool available to conservation biologists for assessing how future losses in biodiversity will lead to a reduction in natural resources and provisioning services from forests.


Subject(s)
Biodiversity , Conservation of Natural Resources , Residence Characteristics , Trees/growth & development , Geography , Linear Models , Madagascar , Models, Biological , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...